Salah satu materi dari mata pelajaran matematika yang akan kamu pelajari di bangku SMP adalah mengenai pertidaksamaan, lebih tepatnya pertidaksamaan linear satu variabel. Kalau begitu mari kita mulai untuk mempelajari hal ini. Dibaca sampai habis ya! Pertidaksamaan linear tersusun dari dua kata yaitu βpertidaksamaanβ dan βlinearβ. Pertidaksamaan adalah bentuk/kalimat matematis, memuat tanda lebih dari β > β, kurang dari β c ax + b , β€, β₯ tanda pertidaksamaan Selain penyelesaian pertidaksamaan linear satu variabel, ada juga penyelesaian pertidaksamaan linear dua variabel. Bentuk pertidaksamaan ini memuat dua peubah variabel dengan pangkat tertinggi variabel tersebut adalah satu. ax + by > c ax + by , β€, β₯ tanda pertidaksamaan Untuk kedua jenis pertidaksamaan linear, jika terdapat kasus kedua ruas dikali atau bagi dengan bilangan negatif -, maka tanda ketaksamaan akan berubah menjadi tanda sebaliknya yang berbeda dari tanda sebelumnya.. Sebagai contoh -6x + 2 -18 x > -3 Tanda pada waktu kedua ruas dikali dengan negatif - Biar bisa lebih paham, mari kita coba lihat contoh soal yang satu ini Contoh Soal Himpunan Penyelesaian Pertidaksamaan Linear Satu Variabel Tentukan himpunan penyelesaian pertidaksamaan linear di bawah ini 4β 3x β₯ 4x + 18 8x + 1 < x β 20 Solusi Untuk soal pertidaksamaan linear yang pertama, kita bisa menyelesaikannya seperti ini 4 β 3x β₯ 4x + 18 β4x β 3x β₯ β4 + 18 β7x β₯ 14 x β€ β2 Sehingga, himpunan penyelesaian pertidaksamaan dari soal nomor 1 yaitu {x x β€ β2, x β R}. Untuk soal kedua, akan bisa diselesaikan seperti ini 8x + 1 < x β 20 8x β x < β20 β 1 7x < β21 x < β3 Sehingga, himpunan penyelesaian pertidaksamaan dari soal ini adalah {x x < β3, x β R} Cobain Kelas Pintar, platform bimbingan belajar yang bisa bantu kamu belajar soal himpunan pertidaksamaan linear dan banyak materi matematika lainnya, ditambah dengan produk SOAL, yang menyediakan berbagai macam soal latihan untuk kamu, dan juga fitur TANYA yang bisa menjawab berbagai pertanyaan mengenai soal atau materi yang belum dikuasai. Jika ada yang masih membuat kamu bingung, silahkan tuliskan pertanyaan kamu di kolom komentar. Dan jangan lupa untuk share pengetahuan ini ya! Please follow and like us Kelas Pintar adalah salah satu partner Kemendikbud yang menyediakan sistem pendukung edukasi di era digital yang menggunakan teknologi terkini untuk membantu murid dan guru dalam menciptakan praktik belajar mengajar terbaik.
HimpunanPenyelesaian Pertidaksamaan Linear Pertidaksamaan linear tersusun dari dua kata yaitu "pertidaksamaan" dan "linear". Pertidaksamaan adalah bentuk/kalimat matematis, memuat tanda lebih dari " > ", kurang dari " < ", lebih dari atau sama dengan " β₯ ", dan kurang dari atau sama dengan " β€ ".
Kelas 10 SMAPersamaan dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Linear Satu Variabel yang Memuat Nilai MutlakPertidaksamaan Linear Satu Variabel yang Memuat Nilai MutlakPersamaan dan Pertidaksamaan Linear Satu Variabel WajibBILANGANMatematikaRekomendasi video solusi lainnya0222Sisa pembagian suku banyak Px=x^3-3x^2+2x-4 oleh x+2...0356Tentukan penvelesaian dari pertidaksamaan 1/x - 3>61019Penyelesaian dari pertidaksamaan 1-2 x/akarx^2+4...0448Jika fx=x/2+1/2 dan gx=2 x-1/3 , maka ...Teks videodisini kita press soal tentang pertidaksamaan nilai mutlak kita diminta untuk menentukan himpunan penyelesaian dari pertidaksamaan nya langkah pertama adalah kita tulis pulang dulu pertidaksamaannya akan menjadi mutlak mutlak x + x kurang dari sama dengan 2 langkah berikutnya adalah kita kuadratkan ke kedua ruas untuk menghilangkan tanda mutlak yang di luar sehingga mutlak x + x dikuadratkan kurang dari = 2 kuadrat itu 4 makanya menjadi x kuadrat + 2x mutlak x + x kuadrat kurang dari sama dengan 4 x kuadrat kan = x kuadrat ditambah 2 x mutlak x + x kuadrat kurang dari sama dengan 4 maka kita dapatkan bahwa 2xditambah 2 x mutlak x kurang dari sama dengan 4 kita bagi dua semuanya menjadi x kuadrat + X motor X kurang dari sama dengan 2 kita tahu bahwa mutlak X itu bisa berarti dua hal yang pertama berarti X jika x nya lebih dari sama dengan nol dan berarti min x jika x nya kurang dari 0 maka kita buat dua kemungkinan untuk yang pertama berarti kita anggap jika XL lebih dari maka kita substitusi x = x menjadi x kuadrat ditambah X dikali x / x kuadrat kurang dari sama dengan 2 maka menjadi 2 x kuadrat kurang dari sama dengan 2 atau kalau kita bagi dua x kuadrat kurang dari 91 x kuadrat min 1Kurang dari sama dengan nol ingat bahwa ini harus kita urai menjadi x + 1 dikalikan x min 1 kurang dari sama dengan nol lalu jika kita buat garis bilangan kita tahu bahwa isinya adalah min 1 dan 1 tandanya bulat penuh Karena ada sama dengannya. Kalau kita uji titik yang mudah pesan kitab suci kitab suci ke sini akan menjadi 1 dikalikan min 1 maka negatif karena tidak ada akar kembar maka selang seling yang dimintakan adalah kurang dari 90 tahu daerahnya adalah yang kita dapatkan bahwa daerahnya adalah yang di tengah-tengah tapi tadi kita punya syarat disini yaitu lebih dari sama dengan nol sehingga kita tambahkan di sini untuk ke sana sehingga kita dapatkan bahwa himpunan penyelesaian dari yang pertama adalahX lebih dari sama dengan 0 x kurang dari sama dengan 1 lalu dari yang kedua nanti kita anggap bahwa x kurang dari 0 maka X = min x kalau kita substitusi basa menjadi x kuadrat dikurang x kuadrat karena X dikali min x min x kuadrat ini kurang dari 12 maka 0 kurang dari = 2 artinya X berapa pun yang penting x kurang dari 0 Jika di subsitusi hasilnya akan selalu kurang dari sama dengan 2 atau kita katakan bahwa dari sini penyelesaiannya adalah x kurang dari sama dengan x kurang dari 0 atau syarat awalnya saja maka himpunan penyelesaiannya adalah irisannya kalau kita iris tadi kita punya kita punya satu lalu kita tahu daerahnya Tadi awalnya di kita punya daerah kedua itu kurang dari 0 artinya sama saja bahwa daerahnya itu kurang dari sama dengan 1 maka himpunan penyelesaian adalah himpunan X dimana x kurang dari = 1 dan X dan Y elemen bilangan real adalah jawabannya sampai jumpa pada pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Karenahimpunan penyelesaian yang kita cari β€ 0 (tandanya -) maka himpunan penyelesaian dari pertidaksamaan kuadrat 2x 2 - 5x β€ -3 adalah {x |0 β€ x β€ Β½ , x Γ R} Perlu diperhatikan bahwa, pada gambar garis bilangan terdapat bulatan pada titik yang menjadi pembuat nol persamaan ada yang dibuat lingkaran atau bulat terbuka dan ada yang
Hayo, siapa yang masih ingat materi tentang logaritma? Saat belajar logaritma, kamu akan dikenalkan dengan istilah persamaan dan pertidaksamaan. Khusus pada perjumpaan kali ini, Quipper Blog akan mengajak Quipperian untuk belajar tentang pertidaksamaan logaritma. Memangnya, apa yang dimaksud pertidaksamaan logaritma? Dan seperti apa bentuk pertidaksamaannya? Daripada penasaran, yuk simak selengkapnya! Pengertian Pertidaksamaan Logaritma Pertidaksamaan logaritma adalah pertidaksamaan yang memuat fungsi logaritma di dalamnya. Oleh karena pertidaksamaan, maka akan berlaku tanda ββ, ββ€β, atau ββ₯β. Sama seperti pertidaksamaan lainnya, pada pertidaksamaan logaritma kamu akan diminta untuk menentukan solusi atau nilai variabel yang memenuhi, sehingga pertidaksamaan bisa berlaku. Solusi itu biasanya dinyatakan dalam bentuk himpunan penyelesaian karena biasanya memuat interval tertentu. Interval kamu peroleh melalui garis bilangan. Bentuk Pertidaksamaan Logaritma Berdasarkan nilai basisnya, bentuk umum pertidaksamaan logaritma dibagi menjadi dua, yaitu pertidaksamaan dengan basis a > 1 dan basis 0 1 Jika suatu pertidaksamaan log memiliki bilangan pokok atau basis lebih besar dari satu, akan berlaku Dengan a = basis bilangan pokok; dan fx dan gx = numerus dalam bentuk fungsi. Ingat, jika basisnya lebih besar dari satu, maka tanda pertidaksamaannya tetap. Bentuk Pertidaksamaan Untuk Bilangan Pokok atau 0 0. Sementara itu, tanda pertidaksamaannya bisa ββ, ββ€β, atau ββ₯β. Sifat Pertidaksamaan Logaritma Sifat-sifat pertidaksamaan logaritma adalah sifat-sifat yang bisa memudahkanmu dalam menyelesaikan suatu pertidaksamaan log. Setiap bentuk pertidaksamaan memiliki sifat yang berbeda-beda. Dengan adanya sifat-sifat ini, kamu hanya perlu menyelesaikan pertidaksamaan pada numerusnya saja, tanpa harus menyelesaikan sistem logaritma itu sendiri. Namun, harus tetap mengacu pada syarat-syarat suatu logaritma, ya. Adapun sifat-sifat pertidaksamaan log adalah sebagai berikut. Sifat Untuk Bilangan Pokok atau a > 1 Jika bilangan pokoknya atau a > 1, berlaku Sifat-sifat di atas menunjukkan bahwa untuk basis a > 1, tanda pertidaksamaannya tetap. Sifat Untuk Bilangan Pokok atau 0 0. Kamu tidak perlu bingung menghafal semua sifat-sifat di atas, ya. Untuk memudahkanmu memahaminya, gunakan SUPER βSolusi Quipperβ berikut ini. Langkah-Langkah Menyelesaikan Pertidaksamaan Logaritma Saat menjumpai soal-soal pertidaksamaan logaritma, pasti kamu akan diminta untuk menentukan himpunan penyelesaian yang memenuhi pertidaksamaan tersebut. Untuk memudahkanmu dalam menentukan himpunan yang dimaksud, ikuti langkah-langkah berikut. Mencari Solusi yang Memenuhi Variabel pada Numerus Oleh karena numerus harus lebih besar dari nol, maka kamu harus menyelesaikan sistem pertidaksamaan pada masing-masing numerusnya dahulu dan mengacu pada fx, gx > 0. Setelah kamu mendapatkan nilai variabel yang memenuhi, gambarkan nilai-nilai tersebut pada garis bilangan. Ambil daerah yang bertanda + karena syarat numerus harus positif. Pada langkah kedua ini, akan diperoleh dua garis bilangan, yaitu garis bilangan untuk fx dan garis bilangan gx. sebelum membuat garis bilangan, tentukan dahulu titik pembuat nolnya, ya. Mencari Solusi yang Memenuhi pada Pertidaksamaan Kedua Numerus Setelah kamu mendapatkan penyelesaian dari kedua numerus, lanjutkan dengan menyelesaikan pertidaksamaan pada kedua numerus, sesuai tanda pertidaksamaannya. Misal alog fx > alog gx, maka ambillah fx > gx saja sesuaikan tandanya dengan sesuai dengan bilangan pokok pada pertidaksamaannya. Hasil yang diperoleh pada langkah ketiga ini, selanjutnya bisa kamu gambarkan pada garis bilangan. Tentukan Irisan Ketiga Solusi Pertidaksamaan Solusi x yang memenuhi merupakan irisan dari tiga pertidaksamaan yang telah kamu kerjakan sebelumnya. Ambil daerah yang memenuhi ketiga solusi pertidaksamaan. Untuk lebih jelasnya, simak contoh berikut. Tentukan penyelesaian dari 2log x + 4 > 2log x2 + 4x! Pembahasan Langkah pertama, tentukan solusi dari setiap pertidaksamaan numerus. Syarat numerus > 0, sehingga x + 4 > 0 β x > -4 β x > -4 Jika digambarkan pada garis bilangan menjadi x2 + 4x > 0 x x + 4 > 0 x = 0 atau x = -4 pembuat nol Jika digambarkan pada garis bilangan, menjadi Solusi yang memenuhi {x 0} Langkah kedua, tentukan solusi pertidaksamaan pada kedua numerus. Oleh karena a > 1, maka tanda pertidaksamaannya tetap. 2log x + 4 > 2log x2 + 4x β x + 4 > x2 + 4x β -x2 β 4x + x + 4 > 0 β -x2 β 3x + 4 > 0 dikali -1 β x2 + 3x β 4 0 β x2 β 7x + 6 > 0 β x β 6x-1 > 0 β x > 6 atau x 0 β x2 + 3x > 0 β xx+3 > 0 β x > 0 atau x 0 β -2x + 14 > 0 β -2x >-14 β x 0, gx > 0, dan fx < gx yang diperoleh dari garis bilangan. Dengan demikian, irisannya adalah sebagai berikut. {x β 7 < x < -3} {x 0 < x < 2} Jadi, himpunan penyelesaian pertidaksamaan pada soal adalah {x β 7 < x < -3} atau {x 0 < x < 2}. Itulah pembahasan Quipper Blog kali ini. Semoga bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper!
Definitbiasanya menyebabkan pertidaksamaan memiliki penyelesaian yang mengandung nilai positif atau negatif. Definit dibedakan menjadi dua yaitu definit positif dan definit negatif. Ax 2 +Bx+C=0 (bentuk umum) Jika nilai A > 0 dan nilai D < 0 pada bentuk Ax 2 +Bx+C=0, maka kondisinya disebut definit positif.
Ingatkembali langkah-langkah menggambarkan daerah penyelesaian dari suatu sistem pertidaksamaan : Gambar garis dengan mencari titik potong sumbu-x dan sumbu-y. Ambil sebarang titik uji yang tidak melewati masing-masing garis tersebut. Subtitusikan titik uji ke masing-masing pertidaksamaan
Pertidaksamaanlinear lebih dari (>) Langkah penyelesaian sama dengan soal no 1. Karena pertidaksamaannya lebih besar dari (>), maka himpunan penyelesaian untuk 2x + 3y > 6 berada di atas garis 2x + 3y = 6 dan tidak termasuk titik-titik sepanjang garis 2x + 3y = 6.
Himpunanpenyelesaian pertidaksamaan logaritma adalah nilai-nilai yang memenuhi suatu pertidaksamaan dari fungsi logaritma. Banyak nilai dalam himpunan bagian dapat terdiri dari satu, dua, atau tak hingga jumlahnya. Himpunan penyelesaian pertidaksamaan logaritma diperoleh dari hasil akhir perhitungan dengan mempertimbangkan syarat yang berlaku.
jpT9pu. 4e6bvv1l5c.pages.dev/684e6bvv1l5c.pages.dev/904e6bvv1l5c.pages.dev/3654e6bvv1l5c.pages.dev/2974e6bvv1l5c.pages.dev/2314e6bvv1l5c.pages.dev/1934e6bvv1l5c.pages.dev/2894e6bvv1l5c.pages.dev/694e6bvv1l5c.pages.dev/365
cari himpunan penyelesaian dari pertidaksamaan